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Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-

derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of

a coupled model to directly impact another component through inclusion of cross-domain terms in the background error co-

variance matrix. When different components have disparate dominant spatial scales, localization between model domains must

properly account for the multiple length scales at play. In this work we develop two new multivariate localization functions,5

one of which is a multivariate extension of the fifth-order piecewise rational Gaspari-Cohn localization function; the within-

component localization functions are standard Gaspari-Cohn with different localization radii while the cross-localization func-

tion is newly constructed. The functions produce non-negative definite localization matrices, which are suitable for use in

variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two

other multivariate localization functions and to the univariate analogs of all four functions in a simple experiment with the10

bivariate Lorenz ’96 system. In our experiment the multivariate Gaspari-Cohn function leads to better performance than any of

the other localization functions.

1 Introduction

An essential part of any data assimilation (DA) method is the estimation of the background error covariance matrix B. The

background error covariance statistics stored in B dictate how information from observations propagates through the domain15

during the assimilation step (Bannister, 2008). A poorly designed B matrix may lead to an analysis estimate, after the assim-

ilation of observations, that is worse than the prior state estimate (Morss and Emanuel, 2002). In ensemble DA schemes the

B matrix is estimated through an ensemble average. Using an ensemble to estimate B allows the estimates of the background

error statistics to change with the model state, which is desirable in many geophysical systems. However, this estimate of B

will always include noise due to sampling errors because the ensemble size is finite. In practice, ensemble size is limited by20

computational resources and hence sampling errors can be substantial. The standard practice to mitigate the impact of these

errors is localization. A number of different localization methods exist in the DA literature (e.g Gaspari and Cohn, 1999;

Houtekamer and Mitchell, 2001; Bishop and Hodyss, 2007; Anderson, 2012; Ménétrier et al., 2015). In this study we con-

centrate on distance-based localization. Distanced-based localization uses physical distance as a proxy for correlation strength

and sets correlations to zero when the distance between the variables in question is sufficiently large. Localization is typically25
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incorporated into an ensemble estimate of B through a Schur (or element-wise) product. The Schur product theorem (Horn and

Johnson, 2012, Theorem 7.5.3) guarantees that if the localization matrix is non-negative definite, then the localized estimate

of B is also non-negative definite. Non-negative definiteness of estimates of B is generally desirable in all DA schemes and is

essential in variational schemes.

The localization functions presented in this work are suitable for use in coupled DA, where two or more interacting large-30

scale model components are assimilated in one unified framework. Coupled DA is widely recognized as a burgeoning and vital

field of study. In Earth system modeling in particular, coupled DA shows improvements over single domain analyses (Penny

et al., 2017; Zhang et al., 2020). However, coupled DA systems face unique challenges as they involve simultaneous analysis

of multiple domains spanning different spatiotemporal scales. Cross-domain correlations in particular are found to be spatially

inhomogeneous (Penny et al., 2017). Schemes that include cross-domain correlations in the B matrix are broadly classified35

as strongly coupled, which is distinguished from weakly coupled schemes where B does not include any nonzero cross-

domain correlations. The inclusion of cross-domain correlations in B offers advantages, particularly when one model domain

is more densely observed than another (Smith et al., 2020). Strongly coupled DA requires careful treatment of cross-domain

correlations with special attention to the different correlation length scales of the different model components. Previous studies,

discussed below, show that appropriate localization schemes are vital to the success of strongly coupled DA.40

As in single domain DA, there is a broad suite of localization schemes proposed for use in strongly coupled DA. Lu et al.

(2015) artificially deflate cross-domain correlations with a tunable parameter. Yoshida and Kalnay (2018) use an offline method,

called correlation-cutoff, to determine which observations to assimilate into which model variables and the associated localiza-

tion weights. The distance-based multivariate localization functions developed in Roh et al. (2015) allow for different localiza-

tion functions for each component and are non-negative definite, but require a single localization scale across all components.45

Other distance-based localization schemes allow for different localization length scales for each component, but are not nec-

essarily non-negative definite (Frolov et al., 2016; Smith et al., 2018; Shen et al., 2018). Frolov et al. (2016) report that their

proposed localization matrix is experimentally non-negative definite for some length scales. Smith et al. (2018) use a similar

method and find cases in which their localization matrix is not non-negative definite.

In this work, we build on these methods and investigate distance-based, multivariate, non-negative definite localization50

functions and their use in strongly coupled DA schemes. We introduce a new multivariate extension of the popular fifth-order

piecewise rational localization function of Gaspari and Cohn (1999) (hereafter GC). This function is non-negative definite

for all length scales and hence appropriate for EnVar schemes. We compare this to another newly developed multivariate

localization function that extends Bolin and Wallin (2016), and to two other functions from the literature (Daley et al., 2015).

We investigate the behavior of these functions in a simple bivariate model proposed by Lorenz (1995). In particular, we look at55

the impact of variable localization on the cross-domain localization function. We show that these functions are compatible with

variable localization schemes of Lu et al. (2015); Yoshida and Kalnay (2018). We find that, in our set up, artificially decreasing

the magnitude of the cross-domain correlation hinders the assimilation of observations. We compare all of the multivariate

functions to their univariate analogs and observe that the new multivariate extension of GC outperforms all competitors.

2

https://doi.org/10.5194/npg-2021-8
Preprint. Discussion started: 3 March 2021
c© Author(s) 2021. CC BY 4.0 License.



This paper is organized as follows. In Sect. 2 we present two new multivariate localization functions and two multivariate60

localization function from the literature. In Sect. 3 we describe the set up for the experiment whose results are presented in

Sect. 4.

2 Multivariate localization functions

2.1 Multivariate localization background

Consider the background error covariance matrix B of a strongly coupled DA scheme with interacting model components X65

and Y . The B matrix may be written in terms of background error covariances for components X and Y (BXX and BYY)

and cross-domain covariances between X and Y (BXY and BYX). Strongly coupled DA is characterized by the inclusion of

nonzero cross-domain covariances in BXY and BYX. Similarly to B, the localization matrix L may be decomposed into a

2× 2 block matrix so that the localized estimate of the background covariance matrix is given by

L ◦B =


LXX LXY

LYX LYY


 ◦


BXX BXY

BYX BYY


 , (1)70

where ◦ denotes a Schur product. In distance-based localization, the elements in the L matrix are evaluated through a localiza-

tion function L with a specified localization radius R, beyond which L is zero. For example, if Bij is the sample covariance

Cov(Xi,Xj) where Xi =X(si) denotes the process X at spatial location si ∈ Rn, then the associated localization weight is

Lij = L(dij), where dij = ‖si− sj‖. Furthermore, if d > R then L(d) = 0.

Often different model components will have different optimal localization radii and hence one may wish to use a different75

localization function for each model component (Ying et al., 2018). Let LXX and the LY Y be the localization functions

associated with model components X and Y respectively. A fundamental difficulty in localization for strongly coupled DA is

how to propose a cross-localization function LXY to populate both LXY and LYX such that, LXX ,LY Y , and LXY together

are a multivariate, non-negative definite function in the sense that they produce a non-negative definite L matrix (Genton and

Kleiber, 2015). In this study we compare four different multivariate localization functions, including one that extends GC.80

In our comparison of multivariate localization functions, we investigate the impact of the shape parameters cross-localization

radius, and cross-localization weight factor. The cross-localization radius, RXY , is the smallest distance such that for all

d > RXY we have LXY (d) = 0. The cross-localization radius depends on the localization radii RXX ,RY Y associated with

components X,Y . We define the cross-localization weight factor, β ≥ 0, as the value of the cross-localization function at

distance d= 0, i.e. β := LXY (0). The cross-localization weight factor β is restricted to be less than or equal to 1 in order85

to ensure non-negative definiteness (Genton and Kleiber, 2015) and smaller values of β lead to smaller analysis updates

when updating the X model component using observations of Y , and vice versa. Each function we consider has a different

maximum allowable cross-localization weight, which we denote βmax. Values of β greater than βmax lead to functions that

are not necessarily non-negative definite, while values of β less than βmax are allowable and may be useful in attenuating
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undesirable correlations between blocks of variables (Lu et al., 2015). However, we find that in our experimental setup the best90

performance comes when β = βmax.

Note that while this example shows model space localization for a coupled model with two model components, the local-

ization functions we develop and investigate may also be used in observation space localization, and can be extended to an

arbitrary number of model components.

2.2 Kernel convolution95

Localization functions created through kernel convolution, such as GC, may be extended to multivariate functions in the

following straightforward manner. Suppose LXX(d) = [kX ∗ kX ](d) and LY Y (d) = [kY ∗ kY ](d) where d ∈ Rn, d= ‖d‖, ∗
denotes convolution over Rn, and kX and kY are square integrable functions. For ease of notation let the kernels kX and kY

be normalized such that LXX(0) = LY Y (0) = 1, which is appropriate for localization functions. Then the function LXY (d) =

[kX ∗ kY ](d) is a compatible cross-localization function in the sense that, when taken together, LXX ,LY Y , and LXY form a100

multivariate, non-negative definite function.

As a proof, we define two processes Zj , j =X,Y , as the convolution of the kernel kj with a white noise fieldW:

Zj(s) =
∫

Rn

kj(s− t)dWt. (2)

It is straightforward to show that the localization functions we have defined are exactly the covariance functions for these two

processes,Lij(d) = Cov(Zi(s),Zj(t)), i, j =X,Y , with s,t ∈ Rn and d= ‖s−t‖. ThusLXX ,LY Y ,LXY form a multivariate105

covariance function, and hence a multivariate, non-negative definite function.

For multivariate localization functions defined in this manner, the cross-localization radius is the average of the two lo-

calization radii for model components X and Y , RXY = 1
2 (RXX +RY Y ). Note that if LXX ,LY Y ,LXY is a multivariate,

non-negative definite function, then so is LXX ,LY Y ,βLXY for β < 1 (Roh et al., 2015). Thus, we may choose to attenuate

the cross-domain covariances through a cross-localization weight factor β. To aid in comparisons to other cross-localization110

functions, we re-define kernel-based cross-localization functions as,

LXY (d) =
β

βmax
[kX ∗ kY ] (d) (3)

where βmax = [kX ∗ kY ](0), and β ≤ βmax.

For most kernels, closed form analytic expressions for the convolutions above are not available. In the following two sections

we present two cases below where a closed form is available. The kernels used in these two cases are the tent function (GC)115

and the indicator function (Bolin-Wallin).

2.3 Multivariate Gaspari-Cohn

The standard univariate GC localization function is constructed through convolution over R3 of the kernel, k(r)∝
(
1− r

c

)
+

,

with itself. The kernel is normalized so that L(0) = 1, z+ = max{z,0}, and c is the radius of the kernel. The resulting con-

volution is zero at distances greater than 2c, where the two kernels are entirely non-overlapping. Thus c is referred to as the120
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Figure 1. Four multivariate localization functions are shown in three panels. The first panel shows the functionLY Y used to localize the short

process, Y . The second panel shows the function LXX used to localize the long process, X . The third panel shows the cross-localization

function LXY . In each panel, the color of the line shows the different multivariate functions: Gaspari-Cohn (blue), Bolin-Wallin (red), Askey

(yellow), and Wendland (purple). In the case of univariate localization, the functions in the left panel are used to localize all processes.

localization half-width, and is related to the localization radius by c=R/2. We develop a multivariate extension of this function

through convolutions with two kernels,

kj(r)∝
(

1− r

cj

)

+

, j =X,Y. (4)

The resulting localization functions L(GC)
jj (d) = [kj ∗ kj ](d) are exactly equal to GC, Eq. (4.10) in Gaspari and Cohn (1999)

with half-widths cj =Rjj/2, j =X,Y . The derivation of and resulting formula for L(GC)
XY (d) = [kX ∗kY ](d) are quite lengthy125

and are thus included in Appendix A. The maximum cross-localization weight factor for the multivariate GC function is

βmax = 5
2κ
−3− 3

2κ
−5, where κ2 = max{RXX ,RY Y }

min{RXX ,RY Y } . The support for the cross-localization function isRXY = 1
2 (RXX+RY Y ).

An example multivariate GC function with RXX = 45, and RY Y = 15, and β = βmax is shown in Fig. 1. The multivariate GC

localization function for three or more model components is discussed in Appendix A3.

2.4 Multivariate Bolin-Wallin130

We derive our second multivariate localization function through convolution of normalized indicator functions over a sphere in

R3. As in the previous section, the kernels are supported on spheres of radii cX and cY ,

kj(r) =
√

3√
4πc3j

Icj (r) , j =X,Y, (5)

where Icj (r) is an indicator function which is 1 if r ≤ cj and 0 otherwise. The resulting univariate localization function for

within-process localization is135

L(BW )
jj (d) =

3
2πc3j

·V3

(
cj ,

d

2

)
if 0≤ d < Rjj = 2cj , j =X,Y. (6)
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Original Wendland Functions

ψ̃3,1(d) = (1− d)4+(4d+1)

ψ̃4,2(d) = 1
3
(1− d)6+

(
35d2 +18d+3

)
ψ̃5,3(d) = (1− d)8+

(
32d3 +25d2 +8d+1

)
ψ̃6,4(d) = 1

5
(1− d)10+

(
429d4 +450d3 +210d2 +50d+5

)
Table 1. Selected univariate Wendland functions

Here V3(r,x) denotes the volume of the spherical cap with triangular height x of a sphere with radius r, which is given by

V3(r,x) =





π
3 (r−x)2(2r+x) |x|< r

0 otherwise
(7)

The label (BW ) references Bolin and Wallin, who perform the necessary convolutions in a work aimed at a different application

of covariance functions (Bolin and Wallin, 2016). While Bolin and Wallin never develop multivariate covariance (or in our case140

localization) functions, the algebra is the same. We present only the localization functions that result from the convolution over

R3, though similar functions for R2 and Rn are available in Bolin and Wallin (2016).

Let cX > cY be localization half-widths, then the resulting cross-localization function is,

L(BW )
XY (d) =

β

βmax
· 3

4π (cXcY )3/2
·





4πc3Y
3 if d < cX − cY

V3

(
cX ,

d2+c2X−c2Y
2d

)
+V3

(
cY ,

d2+c2Y −c2X
2d

)

if cX − cY ≤ d < cX + cY .

(8)

where βmax = κ−3, κ2 = max{RXX ,RY Y }
min{RXX ,RY Y } . As with the multivariate GC, the cross-localization radius for BW is RXY =145

1
2 (RXX +RY Y ). Note that there is a typo in Bolin and Wallin (2016), which has been corrected here. An example multi-

variate BW function with RXX = 45, RY Y = 15, and β = βmax is shown in Fig. 1.

2.5 Wendland-Gneiting functions

We compare the two functions of the preceding sections to the Wendland-Gneiting family of multivariate, compactly-supported,

non-negative definite functions. This family is not generated through kernel convolution, but rather through Montée and De-150

scente operators (Gneiting, 2002). The simplest univariate function in this family is the the Askey function, which is given by

(
1− d

R

)ν

+

. (9)

Other functions in this family are called Wendland functions. Several examples of univariate Wendland functions are displayed

in Table 1.155

Porcu et al. (2013) develop a multivariate version of the Askey function, where the exponent in equation (9) is allowed

to vary by process and the localization radius R is constant across all processes. Roh et al. (2015) find that this multivariate
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localization function outperforms common univariate localization methods when assimilating observations into the bivariate

Lorenz 96 model. Daley et al. (2015) extend the work of Porcu et al. (2013) and construct a multivariate version of general

Wendland-Gneiting functions that allows for different localization radii for different processes. The multivariate Askey function160

from Daley et al. (2015) has the form,

L(A)
ij (d) = βij

(
1− d

Rij

)ν+γij+1

+

, βij =





1 i= j

β i 6= j
, i, j =X,Y (10)

The general form for multivariate Wendland functions is,

L(W )
ij (d) = βijψ̃ν+γij+1,k

(
d

Rij

)
, βij =





1 i= j

β i 6= j
, i, j =X,Y (11)

where ψ̃ is defined as,165

ψ̃ν+γ+1,k(w) =
1

B(2k+ 1,ν+ γ+ 1)

1∫

w

(
u2−w2

)k
(1−u)ν+γdu (12)

with B the beta function. Note that the Askey function in equation (10) is a special case of the Wendland function (11) which

corresponds to the case k = 0. Daley et al. (2015) give sufficient conditions on the parameters ν, k,Rij , γij , and β to guarantee

that equation (11), and hence (10), is non-negative definite. In particular for two processes X,Y , equation (11) is non-negative

definite on Rn when ν ≥ 1
2 (n+ 1) + k, min{RXX ,RY Y } ≥RXY , γXY ≥ RXY

2

(
γXX

RXX
+ γY Y

RY Y

)
, and170

β ≤ βmax :=

√(
R2
XY

RXXRY Y

)ν+2k+1
B(ν+ 2k+ 1,γXY + 1)2

B(ν+ 2k+ 1,γXX + 1)B(ν+ 2k+ 1,γY Y + 1)
. (13)

Going forward we consider the multivariate Askey function (10) and the multivariate Wendland function with k = 1 in (11).

Note that with both of these functions the cross-localization radius depends only on the smallest localization radius. In

fact, we choose RXY = min{RXX ,RY Y }, although smaller values for RXY also produce non-negative definite functions.

Thus for given RXX and RY Y , the cross-localization radius for Askey and Wendland functions is always smaller than the175

cross-localization radius for GC and BW. With the choice RXY = min{RXX ,RY Y }, we see that βmax depends on the ratio
max{RXX ,RY Y }
min{RXX ,RY Y } , as in GC and BW. Examples of multivariate Askey and Wendland functions with RXX = 45, RY Y = 15,

RXY = 15, and β = βmax are shown in Fig. 1. Important parameters for the four multivariate localization functions presented

in this section are summarized in Table 2.

3 Experimental design180

We compare the four multivariate localization functions in Sect. 2 to a simple approach to localization in coupled DA, which is

to use the same localization function for all model components. We call this approach univariate localization. A second simple
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Function name Maximum cross-localization weight factor, Cross-localization radius

κ2 = max{RXX ,RY Y }
min{RXX ,RY Y }

Gaspari-Cohn 5
2
κ−3− 3

2
κ−5 1

2
(RXX +RY Y )

Bolin-Wallin κ−3 1
2
(RXX +RY Y )

Askey κ−(ν+1)
√

B(ν+1,γXY +1)2

B(ν+1,γXX+1)B(ν+1,γY Y +1)
min{RXX ,RY Y }

Wendland κ−(ν+2k+1)
√

B(ν+2k+1,γXY +1)2

B(ν+2k+1,γXX+1)B(ν+2k+1,γY Y +1)
min{RXX ,RY Y }

Table 2. Summary of localization functions.

approach is to use different localization functions for each process and then zero out all cross-correlations between processes.

This approach leads to a “weakly” coupled scheme, which is not the focus of this work. Additionally, in our setup we observe

only one of the two processes and we find that when the assimilation is not allowed to update the unobserved process the result185

is prone to catastrophic divergence. Hence going forward we focus on the comparison between univariate and multivariate

localization. In this section we outline the details of the model and assimilation scheme.

3.1 Bivariate Lorenz model

The bivariate Lorenz 96 model is a simple model of two coupled variables with distinct temporal and spatial scales. This model

is a conceptual model of atmospheric processes, where the “short” process can be thought of as rapidly-varying small-scale190

convective fluctuations and the “long” process can be thought of as smooth large-scale waves. The model is periodic in the

spatial domain, as a process on a fixed latitude band would be. In the bivariate Lorenz 96 model, X is the “long” process with

K distinct variables,Xk for k = 1, . . . ,K. The “short” process, Y , has JK distinct variables, Yj,k for j = 1, . . .J,k = 1, . . . ,K.

The governing equations are,

dXk

dt
= −Xk−1 (Xk−2−Xk+1)−Xk − (ha/b)

J∑

j=1

Yj,k +F (14)195

dYj,k
dt

= −abYj+1,k (Yj+2,k −Yj−1,k)− aYj,k + (ha/b)Xk. (15)

The Y process is divided into K sectors, with each sector corresponding to one “long” variable Xk. The Y variables, ar-

ranged in order, are Y1,1,Y2,1, . . . ,YJ,1,Y1,2,Y2,2, . . . ,YJ,K . Succinctly, Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1, with periodicity

conditions Yj,k+K = Yj,k−K = Yj,k for all j,k. The X process is also periodic with Xk+K =Xk−K =Xk for all k.

We follow Lorenz (1995) and let K = 36,J = 10, so there are 10 times as many “long” variables as “short” variables. We200

let a= 10 and b= 10, indicating that convective scales fluctuate 10 times faster than the larger scales, while their amplitude

is around 1/10 as large. For the forcing we choose F = 10, which Lorenz (1995) found to be sufficient to make both scales

behave chaotically. All simulations are performed using an adaptive fourth-order Runge-Kutta method with relative error

tolerance 10−3 and absolute error tolerance 10−6. The solutions are output with a time interval of 0.005 nondimensional units,

or 36 minutes, as in Lorenz (1995). This time scale is 10 times shorter than the time scale typically used in the univariate205

Lorenz 96 model (0.05 nondimensional units, or around 6 hours). The factor of 10 is consistent with the understanding that the
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Figure 2: Inspiration from the Wilks 2005 paper in QJMS. Figure can be
adapted for other values of K and J .

2

Figure 2. Left: Schematic illustrating the location of the different variables in the bivariate Lorenz 96 model, inspired by Wilks (2005). The

set up has K = 36 sectors, with J = 10 “short” process variables per sector. The “long” process is shown on the inner circle and each X

variable is labeled. The “short” process is shown, unlabeled, on the outer circle. Brackets show the sectors. Right: A single snapshot of the

bivariate Lorenz 96 model with variables placed on a circle. The “long” process X is shown with a dashed line and has amplitude about 10

times larger than the “short” process Y (solid black line).

“short” process evolves 10 times faster than the “long” process, where the “long” process is akin to the univariate Lorenz 96

model. In choosing the coupling strength, we follow Roh et al. (2015) and set h= 2, which is twice as strong as the coupling

used by Lorenz. Increasing the coupling strength leads to larger covariances between the forecast errors in processes X and Y ,

thereby making the effect of cross-localization more pronounced and easier to study.210

The variables are periodic, so we represent them on a circle where the arc length between neighboring Y variables is 1.

There are 360 Y variables, so the radius of the circle is r = 180/π. Variable Yj ,k is located at (r cos(θj,k), r sin(θj,k)) where

θj,k = π(10(k−1)+j)
180 . We choose to place the variableXk in the middle of the sector whose variables are coupled to it, i.e.Xk is

halfway in between Y5,k and Y6,k. Variable Xk is located at (r cos(φk), r sin(φk)) where φk = π(10(k−1)+5.5)
180 . The placement

of these variables is illustrated in Fig. 2. The chord distance between any two variables is 2r sin
(

∆θ
2

)
, where ∆θ is the angle215

increment, e.g. the angle increment between Yj1,k1 and Yj2,k2 is ∆θ = |θj1,k1 − θj2,k2 |.

3.2 The assimilation scheme

We develop localization functions for EnVar schemes where non-negative definiteness of the localization matrix is essential to

ensure convergence of the numerical optimization. Since the minimizer of the 3D-EnVar objective function is the same as the

EnKF analysis mean in the case of linear observation (Lorenc, 1986), in this experiment we make use of the EnKF rather than220

implement an ensemble of 3D-EnVar assimilation scheme (Evensen, 1994; Houtekamer and Mitchell, 1998; Burgers et al.,

1998). The EnKF update formula for a single ensemble member is

xa = xb + K
(
y + η−Hxb

)
(16)
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where xa is the analysis vector, xb is the background state vector, y is the observation, each element of η is a random draw

from the probability distribution of observation errors, and H is the linear observation operator. The Kalman gain matrix K is225

K = BHT
(
HBHT + R

)−1

(17)

where B is the background error covariance matrix and R is the observation error covariance matrix. The background covari-

ance matrix is approximated by a sample covariance matrix from an ensemble, xi for i= 1, . . . ,Ne where Ne is the ensemble

size. The localization matrix L is incorporated into the estimate of the background covariance matrix through a Schur product

as in equation (1). In this experiment we use the adaptive inflation scheme of El Gharamti (2018) and apply the inflation to the230

prior estimate. We initialize the inflation factor at λ= 1.1 everywhere, and the inflation variance at σ2
λ = 0.09.

We use Ne = 20 ensemble members, except where otherwise noted. The small ensemble size is chosen to accentuate the

spurious correlations and hence the need for effective localization functions. We run each DA scheme for 3,000 time steps,

discarding the first 1,000 time steps and reporting statistics from the remaining 2,000 time steps. Each experiment is repeated 50

times with independent reference states and observation errors. The observation operator H is such that all of the Y variables are235

observed, and none of theX variables are observed. In this way we can isolate the effect of the localization on the performance

of the filter for the X variable. The observation error variance for the Y process is σ2
Y = 0.005, which is about 5% of the

climatological variance of the Y process.

3.3 Univariate vs. multivariate setup

We compare univariate and multivariate versions of four localization functions: Gaspari-Cohn, Bolin-Wallin, Askey, and Wend-240

land. Across all functions, the univariate localization function is equivalent to the localization function for the Y process,

L= LY Y . All univariate functions use a localization radius of R= 15. All multivariate functions use localization radius

RY Y = 15 for the Y process and RXX = 45 for the X process. For multivariate Gaspari-Cohn and Bolin-Wallin this im-

plies a cross-localization radius equal to RXY = 30. For multivariate Askey and Wendland the cross-localization radius is

RXY = 15. These localization radii are chosen in accordance with sensitivity experiments, described in Appendix B1.245

For all functions we use the maximum allowable cross-localization weight factor, β = βmax. We find that, because we

observe only the Y process and hence the only updates to X are through observations of Y , smaller cross-localization weight

factors lead to degraded performance. Details of the sensitivity experiments involving β are provided in Appendix B2. We

hypothesize that an important factor in the performance of the multivariate localization functions is the size of βmax and

that functions with a larger βmax will allow for more information to propagate across model domains which will lead to better250

performance in our setup. With our chosen parameters, the multivariate Askey function has the largest cross-localization weight

factor at βmax ≈ 0.46, followed by Gaspari-Cohn (βmax ≈ 0.38), Wendland (βmax ≈ 0.22), and Bolin-Wallin (βmax ≈ 0.19).

A visual representation of this ordering is shown in the third panel of Fig. 1. In this figure we see that the shape of each

cross-localization function varies not only in its height at zero, but also in its radius and smoothness near zero. While Askey

peaks higher than GC, GC is generally smoother near zero and has a larger cross-localization radius. All of these differences255

in shape impact directly how much information propagates across model domains, so that we hypothesize that GC allows for
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larger cross-domain updates than any of the other multivariate localization functions presented here. The parameter choices for

each function in the experiment and Fig. 1 are assembled in Table 3 and described in further detail in Appendix B3.

Function name Univariate parameters Multivariate parameters Univariate Multivariate

median RMSE median RMSE

Gaspari-Cohn R= 15 RY Y = 15, RXX = 45,RXY = 30, β ≈ 0.38 0.036 0.028

Bolin-Wallin R= 15 RY Y = 15, RXX = 45,RXY = 30, β ≈ 0.19 0.035 0.033

Askey R= 15, ν = 1 RY Y = 15, RXX = 45,RXY = 15, β ≈ 0.46, 0.034 0.035

ν = 1, γY Y = 0, γXX = 1, γXY = 1
6

Wendland R= 15, ν = 2, k = 1 RY Y = 15, RXX = 45,RXY = 15, β ≈ 0.22, 0.036 0.047

ν = 2, γY Y = 0, γXX = 5, γXY = 5
6

, k = 1

Table 3. Parameter choices for the experiment comparing univariate and multivariate localization

4 Univariate vs. multivariate results

Figure 3 shows the RMSE for process X for the localization functions defined in Table 3. Each panel compares performance260

with univariate and multivariate versions of a function. The performance of all of the univariate localization functions is very

similar. This is consistent with the fact that all of the univariate localization functions have similar shapes as seen in the first

panel of Fig. 1. The univariate functions, while they do not allow for longer-range cross-domain updates, do allow for the

largest cross-domain updates at small distances, with L(0) = 1 and hence provide a consistent benchmark against which to

test the multivariate functions. The multivariate localization functions, on the other hand, show great diversity of performance.265

GC shows improved performance when using the multivariate localization function. By contrast, the BW and Askey functions

show virtually no difference between the multivariate and univariate versions. The Wendland function shows significantly

worse performance with the multivariate function when compared to the univariate version.

As noted in Sect. 3.3 the shape of the GC cross-localization function appears to allow for the most cross-domain localization

because it is nearly as tall as Askey, fairly smooth near d= 0, and it decays to zero more slowly than any other function, with270

the possible exception of BW. We hypothesize that GC allows for sufficient cross-domain information propagation at both short

and long distances and this is why multivariate GC outperforms all other functions in this experiment.

Askey has the largest cross-localization weight factor of any of the multivariate functions we consider, and yet shows no

improvement over the univariate version. Both the Askey and Wendland functions have smaller cross-localization radii and

fall off very rapidly compared to GC and BW. Thus multivariate Askey allows for the largest cross-domain updates at short275

distances, but not at longer distances. By contrast, Wendland and BW both have small cross-localization weight factors, so that

even at short distances the ability to propagate information across model domains is limited. Thus, BW allows for minimal

cross-domain updates at short distances, but this falls off slowly at longer distances. Multivariate Wendland, which allows for

minimal cross-domain updates at short distances and falls off very quickly, shows the worst performance.
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Figure 3. Histograms of RMSE for theX process with different localization functions. In each plot the blue histogram shows the distribution

of RMSE when univariate localization is used. The red histogram shows the distribution when multivariate localization is used. Insets in

each panel show the cross-localization functions in the case of univariate (blue) and multivariate (red) localization. All four univariate

localization functions perform similarly with median RMSE ranging from 0.034 to 0.036, while there is a greater range in performance for

the multivariate versions of these functions. Multivariate Gaspari-Cohn shows improvement over its univariate counterparts. Univariate and

multivariate Bolin-Wallin and Askey functions appear to perform similarly. For Wendland, the multivariate function performs significantly

worse than the univariate function.
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5 Conclusions280

In this work we develop a multivariate extension of the oft-used GC localization function, where the within-component local-

ization functions are standard GC with different localization radii, while the cross-localization function is newly constructed

to ensure that the resulting localization matrix is non-negative definite. A non-negative definite localization matrix guarantees,

through the Schur product theorem, that the localized estimate of the background covariance matrix is non-negative defi-

nite (Horn and Johnson, 2012, Theorem 7.5.3). We compare multivariate GC to three other multivariate localization functions285

(including one other newly presented multivariate function), and their univariate counterparts. We find that, in a toy model, mul-

tivariate GC leads to better performance than any of the other localization functions we consider. There is still an outstanding

question of how multivariate GC will perform in other, perhaps more realistic, systems.

In this work we investigate the importance of the cross-localization weight factor, which determines the amount of informa-

tion which is allowed to propagate between co-located variables in different model components. We find that this parameter290

should be as large as possible. This is likely unique to our setup as other studies have shown the value in deflating cross-domain

updates between non-interacting processes (Lu et al., 2015; Yoshida and Kalnay, 2018). This can easily be incorporated in this

framework by taking β to be small or even zero.

A natural application of this work is localization in a coupled atmosphere-ocean model. Multivariate GC allows for within-

component covariances to be localized with GC exactly as they would be in an uncoupled setting, using the optimal localization295

length scale for each component Ying et al. (2018). In this work we discuss the importance of the cross-localization radius in

determining performance. However, this work does not address the question of optimal cross-localization radius selection,

which is an important area for future research.

Appendix A: Derivation of multivariate Gaspari-Cohn

A1 Multivariate Gaspari-Cohn cross-localization function300

Let cX , cY be the localization half-widths associated with model componentsX and Y . Without loss of generality, we may take

cX > cY . We find there are two different cases to consider, when cX < 2cY and when cX ≥ 2cY . In both cases, the notation

is significantly simplified when we let cX = κ2cY . The first case we consider is when cY < cX < 2cY . In this case, the GC
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cross-localization function is,

L(GC)
XY (d) =

β

βmax
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(A1)305

where where βmax = 5
2κ
−3− 3

2κ
−5 and β ≤ βmax. Note that when we let cX → cY , which implies κ→ 1, this multivariate

version converges to the standard, univariate, Gaspari-Cohn function, as we would expect.
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The second case we consider is cX > 2cY . Again, let cX = κ2cY . In this case, the cross-localization function is

L(GC)
XY (d) =

β

βmax
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(A2)

where, as in the above case, βmax = 5
2κ
−3− 3

2κ
−5 and β ≤ βmax. Note that when cX = 2cY , and hence κ=

√
2, both (A1)310

and (A2) are the same.

A2 Derivation of multivariate Gaspari-Cohn cross-localization function L(GC)
XY

The multivariate GC cross-localization function is created through the convolution of two kernels, L(GC)
XY (d) = [kX ∗ kY ](d),

with kj(r) = k0
j (‖r‖) = (1−‖r‖/cj)+, j =X,Y , and r ∈ R3. Theorem 3.c.1 from Gaspari and Cohn (1999) provides a frame-

work for evaluating the necessary convolutions. It is shown that for radially symmetric functions kj(r) = k0
j (||r||) compactly315

supported on a sphere of radius cj , j =X,Y , with cY ≤ cX the convolution over R3,

P 0
XY (‖d‖) =

∫
k0
X(‖r‖)k0

Y (‖d− r‖) dr, (A3)

can be written as,

P 0
XY (d) =

2π
d

cY∫

0

rk0
Y (r)

r+d∫

|r−d|

sk0
X(s) ds dr. (A4)

The normalization factor P 0
jj(0) is equal to320

P 0
jj(0) = 4π

cj∫

0

(
rk0
j (r)

)2
dr, j =X,Y. (A5)

The resulting cross-localization function is a normalized version of (A4),

LXY (d) :=
P 0
XY (d)

[P 0
XX(0)P 0

Y Y (0)]1/2
, (A6)
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Now we compute the normalization factor P 0
jj(0) using the GC kernels. Plugging in k0

j (r) = (1− r/cj)+ gives,

P 0
jj(0) = 4π

cj∫

0

r2(1− r/cj)2 dr =
2π
15
c3j , j =X,Y. (A7)325

Thus the denominator in Eq. (A6) is

[P 0
XX(0)P 0

Y Y (0)]1/2 =
2π
15

√
c3Xc

3
Y . (A8)

To compute the numerator in Eq. (A6), which is precisely (A4), we consider eight different cases.

The case cX > 2cY and 0≤ |d|< cY is shown in detail here. The other cases are derived similarly and are not shown. The

inner integral in equation (A4) is330

r+d∫

|r−d|

sk0
X(s) ds=

r+d∫

|r−d|

s(1− s/cX) ds= 2rd− 1
3cX





2r3 + 6rd2 if r ≤ d

6r2d+ 2d3 if r ≥ d
(A9)

The outer integral in (A4) is

cY∫
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3cX
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which simplifies to

1
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Substituting (A11) into (A4) we see,

P 0
XY (d < cY ) = 2π

(
1
6
c3Y −

1
3cX

[
1

30cY
d5− 1

10
d4 +

1
3
c2Y d

2 +
3
10
c4Y

])
. (A12)

With the proper normalization, we have the cross-localization function,

LXY (d < cY ) =
15

2π
√
c3Xc

3
Y

P 0
XY (d < cY ). (A13)

Now make the substitution κ2 = cX

cY
and this becomes340

LXY (d < cY ) =−1
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Other cases are calculated similarly, with careful consideration of the bounds of the kernels and integrals.

A3 Multivariate Gaspari-Cohn with three or more length scales

Suppose we have p processes, X1, . . . ,Xp with p different localization radii R11, . . . ,Rpp. Define the associate localization

half widths by cj =Rjj/2 and kernels kj(r)∝ (1− r/cj)+. Then the localization function between process Xi and Xj is345

Lij(d) = αij [ki ∗ kj ](d), with

[αij ]
p
i,j=1 (A15)
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a non-negative definite matrix with 1’s on the diagonal. When i= j, Lii is precisely the standard univariate GC function. When

i 6= j, Lij is given by Eq. (A1) if max{ci, cj}< 2min{ci, cj} or Eq. (A2) otherwise. We have written (A1) and (A2) with a

coefficient β/βmax, which is convenient for the case of two components. Here we replace β/βmax by αij to emphasize the350

importance for three or more length scales is in choosing αij such that (A15) is non-negative definite. The simplest case is to

let αij = 1 for all i, j.

Appendix B: Sensitivity experiments

B1 Localization radius

A fair comparison between the univariate and multivariate localization functions requires that thoughtful attention be paid to355

the many parameter choices in the different localization functions. While each localization function has its own parameters

and constraints on those parameters, there are two parameters which are shared by all functions: localization radius R, and

cross-localization weight factor β. We discuss the localization radius in this section and the cross-localization weight factor

in B2.

We first pick an appropriate localization radius for univariate localization functions. We use a large (500-member) ensemble360

with no localization to compute forecast error correlations, hereafter called the “true” forecast error correlations, and shown

in Fig. B1. We see that the true forecast error correlations for the “short” process Y degrade to zero in just a few spatial

units. The forecast errors for the “long” process X , by contrast, have meaningful correlations out to about 40 spatial units.

We observe the entire Y process and none of the X process, thus the dominant behavior for the purposes of constructing a

background error covariance matrix is determined by the “short” Y process. Hence we choose the localization radius for the365

univariate localization functions to be consistent with the non-zero correlation range of the Y process. Sensitivity experiments

(not shown) reveal that R= 15 is an appropriate localization radius for univariate localization.

For multivariate localization, we keep the same localization radius for the “short” process, i.e.RY Y =R= 15, and allow the

radius for theX variable to vary. Informed by the true forecast error correlations we chooseRXX = 45, which is approximately

the range of non-negligible correlations for the forecast errors in the X process.370

For the four functions under consideration here, the choice of these two localization radii determines the cross-localization

radius RXY . As shown in Table 2, the cross-localization radius for Gaspari-Cohn and Bolin-Wallin is RXY = 30, while for

Askey and Wendland we have RXY = 15. Note that with Askey and Wendland we could choose to use a smaller cross-

localization radius, but the true forecast error correlation indicates that this would be a mistake, as there are non-negligible

cross-correlations out past 15 units.375

B2 Impact of cross-localization weight factor

The cross-localization weight factor, β, determines how much cross-domain information propagation occurs between the X

and Y processes. This parameter is investigated for the Askey localization function with the same support for both processes
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Figure B1. True forecast error correlations for variables in the middle of each sector, Xk and Y5,k. Correlations between Y variables (blue)

decay to zero after about 5 spatial units, while correlations between X variables (red) are significant up to 40 spatial units away. Cross-

correlations (yellow and purple) are small everywhere, but still significant out to at least 20 spatial units.

by Roh et al. (2015). Each multivariate localization function has a different upper bound on β, which depends on a ratio of

localization radii, as shown in Table 2 and Fig. B2.380

When β = 0 no information is shared in the update step between the observed Y process and the unobserved X process.

In our setup, this leads to no updates of the X variables and eventually to catastrophic filter divergence. In principle the

system might be able to synchronize the unobserved (“long”) process through dynamical couplings with the observed (“short”)

process, but in our setup this does not happen. The best performance generally comes when the cross-correlation is at or

near its maximum allowable value, as shown in Fig. B2. Figure B2 shows visually that the Gaspari-Cohn cross-correlation385

is always greater than the Bolin-Wallin cross-correlation, which is easily verified analytically since κ−3 ≤ 5
2κ
−3− 3

2κ
−5 for

all κ≥ 1 (true by the definition of κ). Similarly we see that the cross-localization weight factor for Askey is greater than

cross-localization weight factor for Wendland across the range of parameters considered here.

B3 Technical details of Askey and Wendland functions

For the multivariate Askey we must choose RXY ,γXX ,γY Y ,γXY , and ν. Both RXY and γXY have bounds restricting the390

possible range of values to ensure non-negative definiteness. For simplicity, we take these values to be at the edge of the

allowable range, RXY = min{RXX ,RY Y }, γXY = RXY

2

(
γXX

RXX
+ γY Y

RY Y

)
. Note that the values of γ enter into the multivariate

Askey function (10) as sums with ν. Since ν is constant across all processes, we demand that either γXX = 0 or γY Y = 0.

Increasing γXX while keeping γY Y = 0 serves to decrease the effective localization radius of processX and increase the cross-

localization weight factor (Fig. B3). Meanwhile, increasing γY Y while keeping γXX = 0 decreases the effective localization395

radius of process Y and hence decreases the cross-localization weight factor. Thus it is no surprise that sensitivity experiments
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Figure B2. Left: Maximum cross-localization weight factor as a function of RXX/RY Y . Right: RMSE for the X process is shown on the

y-axis for different multivariate functions. For all functions, as the cross-localization weight factor increases, the RMSE decreases.

Figure B3. Impact of increasing γXX in Askey and Wendland functions. Left panel shows that increasing γXX allows for larger cross-

localization weights for Askey (solid blue) and Wendland (dashed blue). The effective cross-localization radius, the distance at which

LXY (d)< 0.05, for Askey (solid red) peaks at γXX = 1, and increases steadily for Wendland (dashed red). Sensitivity experiments for

Askey and Wendland are shown in the right two panels. The optimal value for Askey is γXX = 1 and for Wendland is γXX = 5.

(not shown) indicate that fixing γY Y = 0 leads to better results than fixing γXX = 0. Sensitivity experiments also show that

the best performance comes with γXX = 1, shown in Fig. B3.

For univariate Askey we need only choose the parameter ν in equation (9). For non-negative definiteness, we require ν ≥ 1.

Smaller values of ν allow for larger cross-localization weights and longer effective cross-localization radii (Fig. B4), both of400

which are desirable and improve performance in sensitivity experiments (not shown). We choose to use ν = 1, which is as

small as possible while still ensuring a non-negative definite function.
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Figure B4. Impact of increasing ν in Askey and Wendland functions. Increasing ν leads to smaller cross-localization weight factors for

Askey (solid blue) and Wendland (dashed blue). The effective cross-localization radius, the distance at which L(d)< 0.05, also decreases

for both Askey (solid red) and Wendland (dashed red).

Now Wendland comes with further parameters to estimate. In particular, we must choose k, which determines the smoothness

of the function. We choose to work with k = 1 here as higher values lead to unreasonably small cross-localization weight factors

and hence degraded performance. For k = 1, we require ν ≥ 2. As with the Askey function, sensitivity experiments (Fig. B4)405

indicate that the best performance comes when ν is as small as possible. Hence we pick ν = 2. Again, as with the Askey

function we fix γY Y = 0 and investigate γXX > 0. Interestingly, we see that performance improves as γXX increases, all the

way out to γXX = 5 (Fig. B3). We hypothesize that this is because increasing γXX allows for an increased cross-localization

weight and effective localization radius (Fig. B3).
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